Scheda di Offerta Tesi

Titolo (provvisorio): Pyrolytic 3D carbon scaffolds for cell replacement therapy and tissue engineering

Relatore/i: Raiteri Roberto, Claudia Caviglia (DTU), Stephan Sylvest Keller (DTU)

E-mail: rr@unige.it

Indirizzo: via Opera pia 11a

16145 Genova

Tel.: (+39) 010 353-2762

Descrizione

Motivazione e campo di applicazione

Parkinson’s disease (PD) is the second most common neurodegenerative disease caused by gradual deterioration and finally total death of dopaminergic neurons in Substantia Nigra pars compacta, leading to the depletion of dopamine (DA). Its progress is manifested as impairment of the motor functions. Transplantation of dopaminergic neuronal stem cells (NSCs) (stem cell therapy) has become a new possible long-term treatment. NSCs can integrate into the brain, replenishing the supply of dopamine.

Obiettivi generali e principali attività

In a recent study we have shown that an SU-8 derived carbon pillar array remarkably boosted the differentiation of human neuronal stem cells (hNSCs) into dopaminergic neurons (dopamine producing neurons), and that the pillars topography could be used to directly measure and confirm the dopaminergic phenotype of these neurons. This new project involves the exploration of pyrolytic 3D carbon scaffolds of different topography, porosity and conductivity by novel fabrication techniques. 3D carbon microelectrodes will be fabricated and used as both scaffold and sensor simultaneously. The 3D microelectrodes will provide: 1) optimal properties to support cell adhesion, growth and differentiation, 2) electric conductivity to electrochemically monitor in situ and real time cell fate (i.e. dopamine release).

Obiettivi di apprendimento (strumenti tecnici e analitici, metodologie sperimentali)

You will gain knowledge in various scientific areas: Electrodes design and fabrication (cleanroom facilities), Micromilling/Laser ablation/3D Printing, Cell culturing, Electrochemical techniques for surface characterization and cell-based assays, Staining and Microscopy, Data analysis, statistics and critical evaluation of the results. Moreover the student will get experience on summarizing and presenting scientific results.

Luogo/i in cui si svolgerà il lavoro:

Department of Micro- and Nanotechnology, Technical University of Denmark

Informazioni aggiuntive

Numero massimo di studenti: 1

Supporto finanziario/borse di studio: DTU will not provide any financial support/scholarship.