Mechanical catheter design for endoscopic navigation

Thorsace Marco, Padraig Cantillon-Murphy (University College Cork, Ireland)

Marco.Storace@unige.it

Via Opera Pia 11A, secondo piano

(+39) 010353 - 2079

Motivation and application domain

This project involves design, refinement, testing and validation of a novel mechanical user interface for lung catheter navigation at UCC. Lung cancer is the leading cause of cancer death globally and the key to survival is early diagnosis.

General objectives and main activities

This project is part of an ongoing effort at UCC to create an endoscopic platform which can reach further into the deep airways to facilitate real time. The project outcome will be a mechanical handle capable of actuating steering and control for an existing catheter configuration. The student will also be required to complete a thorough mechanical design analysis of the final design as well as complete a failure mode analysis for the prototype. The project will build upon existing expertise in mechanical device design at the Biomedical Design research group at University College Cork. The anticipated project duration is 6 months. Students with experience in 3D drawing (SolidWorks), rapid prototyping (3D printing) and mechanical design are most suitable. Further questions can be directed to padraig@alum.mit.edu

Training Objectives (technical/analytical tools, experimental methodologies)

The student will complete a peer-reviewed publication documenting the methodologies and outcomes.

Mail technical tools: 3D CAD design, SolidWorks, AutoCAD or similar, 3D prototyping and printing

Place(s) where the thesis work will be carried out: The Biomedical Design Research Group, University College Cork, Ireland

Pre-requisite abilities/skills: 3D prototyping and printing experience is an advantage

Maximum number of students: 1